27 research outputs found

    Status and perspective of detector databases in the CMS experiment at the LHC

    Get PDF
    This note gives an overview at a high conceptual level of the various databases that capture the information concerning the CMS detector. The detector domain has been split up into four, partly overlapping parts that cover phases in the detector life cycle: construction, integration, configuration and condition, and a geometry part that is common to all phases. The discussion addresses the specific content and usage of each part, and further requirements, dependencies and interfaces

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    GEANT4--a simulation toolkikt

    Get PDF
    Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    The simulation of the CMS electromagnetic calorimeter

    No full text

    The Role of XML in the CMS Detector Description Database

    No full text
    Offline Software such as Simulation, Reconstruction, Analysis, and Visualisation are all in need of a detector description. These applications have several common but also many specific requirements for the detector description in order to build up their internal representations. To achieve this in a consistent and coherent manner a common source of information, the detector description database, will be consulted by each of the applications. The role and suitability of XML in the design of the detector description database in the scope of the CMS detector at the LHC is discussed. Different aspects such as data modelling capabilities of XML, tool support, integration to C++ representations of data models are treated and recent results of prototype implementations are presented

    Status and perspective of detector databases in the CMS experiment at the LHC

    No full text
    This note gives an overview at a high conceptual level of the various databases that capture the information concerning the CMS detector. The detector domain has been split up into four, partly overlapping parts that cover phases in the detector life cycle: construction, integration, configuration and condition, and a geometry part that is common to all phases. The discussion addresses the specific content and usage of each part, and further requirements, dependencies and interfaces
    corecore